

mBMS Automotive electronics

KEY FEATURES

- For automotive grade High Voltage Batteries
- Scalable solution including Hard- and Software
- mBMS Toolchain, a set of PC based configuration and flash tools
- For all Lithium-Ion family members, incl. LFP, NMC and LTO
- Native support for parallel Batteries

TECHNICAL DATA

- Measurement of cell voltage and temperature
- Cell balancing
- Current measurement up to 2000 A
- Voltage measurement up to 800 V
- Isolation monitoring
- SOC, SOF (PP), SOH_{Ri} determination
- Auxiliary output lines
- Dedicated safety and application processors
- Vehicle interface (CAN busses, interlock generator/detector, KL15, KL30c)

ACCESSORIES

- EMC filter modules
- Pre-charge module
- Load resistor
- Main contactors
- Connector sets

Sensor-Technik Wiedemann GmbH

Am Bärenwald 6 87600 Kaufbeuren

+49 8341 9505-0 info@sensor-technik.de www.stw-mm.com

BLOCK DIAGRAM

Page 2|9

TECHNICAL DATA

External Interfaces (vehicle side)

LV Connector Type	23-pole AMPSEAL (TE connectivity)	
CAN	CAN 1 - ESS-CAN CAN 2 - Interpack CAN CAN 3 - Sensor CAN CAN 4 - SC-Meas CAN	CAN 2.0 B, 500 kBit/s
Interlock	detector and generator alternating current (±20 mA/88 Hz) reaction: enter safe state (main switch off) maximum external loop resistance: 350 Ω	

Internal Interfaces (battery side)

Connector Type	Micro-Fit (Molex)			
Indicators	on-board LEDs			
Cell voltage measure- ment	range: 1V 5V accuracy: 2.5 mV @ 2.5 V 4.3 V			⇔ CSC
Cell temperature mea- surement	NTC-Sensor, $10 \text{ k}\Omega$, characteristics: EPCOS 8016, \Rightarrow CSC B _{25/100} = 3988 K Range: -50 °C +125 °C (-67 °F 257 °F) Accuracy: 2 K plus sensor tolerance			⇔ CSC
Cell balancing current	120 mA @ Ucell = 3.6 V (derated at high temperature)		⇔ CSC	
High voltage measure- ment	range: 0 V 800 V accuracy: offset 0.1V, gain 1 %		⇔ PMB	
Current measurement		PMB1000	PMB2000	⇔ PMB
	range	±1000 A	±2000 A	
	accuracy offset	0.1A	0.2 A	
	accuracy gain	1%		
Coolant temperature measurement	2 x input for NTC- characteristics: F -55 °C +125 °C (- Accuracy: 2 K plu	Sensor 10 kΩ EPCOS 8016, B _{25/100} -67°F 257°F) s sensor tolerance	= 3988 K Range:	⇔ BMS

Internal Interfaces (battery side)

Insulation measurement	between HV (battery) and LV (vehicle chassis) range: 1 4500 kΩ accuracy: 05 kΩ @ 1 20 kΩ 025 % @ 20 1000 kΩ	⇔ BMS
Main switch control	2 x 1.5 A (hold current), 5 A (pickup current)	
System Data		
Wake up options	CAN1 or KL15	
Power supply	8 32 VDC	
Current consumption (active mode)	350 mA @ UB = 12 V (main switches off) 185 mA @ UB = 24 V (main switches off)	⇔ BMS
	10 mA per CSC (supply from cells)	⇔ CSC
Current consumption (sleep mode)	< 100 µA @ UB = 12 V	⇔ BMS
	10 µA per CSC (supply from cells)	⇔ CSC
Dimensions (approx.)	BMS: 212 mm x 100 mm x 33 mm (8.3" x 3.9" x 1.3") PMB: 95 mm x 61 mm x 15 mm (3.7" x 2.4" x 0.6") CSC: 300 mm x 75 mm x 13 mm (11.8" x 3.0" x 0.5")	
Weight (approx.)	BMS: 0.23 kg (0.51 lbs.) PMB: 0.10 kg (0.22 lbs.) CSC: 0.26 kg (0.57 lbs.)	
Operating temperature range	-40 °C +80 °C (-40 °F 176 °F) ambient temperature	9

DESCRIPTION

Battery Main Supervisor (BMS)

The BMS is the central control unit of the battery system. It includes three processors for highest levels of reliability and safety. It collects all information from the sensor modules, from the Cell Sensor Circuits and from the Power Measurement Board, calculates the status of the battery system and controls the HV contactors.

TECHNICAL DRAWING

PIN ASSIGNMENT

Pin assignment sorted by pin numbers

Pin	Designation	Description	max. Current
1	UB	power supply for ECU, KL30	0.4 A + current of Pin4
2	OUT1(CFGO)	digital output 1(LSS1)/ analog input / mas- ter-slave-config.	2 A
3	OUT2	digital output 2 (LSS1) / analog input	2 A
4	OUT3	digital output 3 (HSS2) / analog input	2 A
5	n. c.	do not connect	
6	n. c.	do not connect	
7	IL_IN_LV	interlock loop (external)	0.02 A
8	IL_OUT_LV	interlock loop (external)	0.02 A
9, 10	GND	ground (LV), KL31	Return of Pin 1-3, 16-19
11	-	-	
12	CAN1_H	ESS-CAN (High)	
13	CAN2_H	Interpack CAN (High)	
14	CAN3_H	Sensor-CAN (High)	
15	CAN4_H	SC-Meas-CAN (High)	
16	KL30c	power supply for main contactors	cont. 3 A, inrush 10 A
17	KL15	ignition (high active input)	
18	IN1(CFG2)	analog input 1 / master-slave-config.	
19	IN2 (CFG1)	analog input 2 / master-slave-config.	
20	CAN1_L	ESS-CAN (Low)	
21	CAN2_L	Interpack CAN (Low)	
22	CAN3_L	Sensor-CAN(Low)	
23	CAN4_L	SC-Meas-CAN (Low)	

DESCRIPTION

Cell Sensor Circuit (CSC)

The CSC supervises the individual cells of the battery by measuring voltage and temperature. Each CSC is equipped with a passive discharge path for balancing the charges of the battery cells.

TECHNICAL DRAWING

DESCRIPTION

Power Measurement Board (PMB)

The PMB measures the current (shunt resistor) which flows in or out of the battery, the high voltage value of the battery stack and the traction net. The PMB is equipped with a unique redundant safety circuit which enables the PMB to directly signal a current limit violation.

TECHNICAL DRAWING

SOFTWARE

mBMS Toolchain		mBMS Toolchain		
Configuration Configuring the mBMS to suit your application.		Management Functions		
		Balancing	Passive balancing towards a determined	
Safety parameters	Define and manage system security limits		voltage target is performed on vehicle- request.	
Application parameters	Illustration of cell characteristics Define the battery application strategy	Pre Charge	Traction net capacitors are pre charged before the battery is switched on.	
Update Software update of the complete energy storage system (ESS)		Battery State Determination	SOC: state of charge is determined by means of coulomb counting.	
One-Click-Update	Simple and convenient system administration through automatically		SOF (PP): available power is determined for charging and discharging.	
Diagnosis	configured update packages.		SOH _{Ri} is determined by impedance tracking of a pack.	
Allows easy and quick commission	ning of the energy storage system (ESS)		SOH _{MSW} : Main switch ageing is tracked.	
Battery data	Running mBMS functions and displays	Energy Storage Systems (ESS)		
Failure diagnosis	Supports fault diagnosis by visualization	Parallel Packs	An ESS may be built up by up to eight parallel packs in Master Slave topology	
Safety Functions Battery enters safe state in the events of			An ESS may be built up by an arbitrary number of parallel packs may build up in Multi Master topology	
	cell over voltage, under voltage and over temperature.	Parallel Cell Strings	Large battery packs built up by strings of	
Battery Level	Battery enters safe state in the event of over current.			
System Integrity	Isolation resistance is monitored.			
	Interlock signals associated with HV and LV connections are detected and generated.			
	A multitude of built in self test and diagnostic routines are performed.			

TOPOLOGIES

