
AN2002: CANOpen

Topics
● CANopen Concepts and Standards

● Implementing CANopen

● Troubleshooting

1 Introduction
CANopen is a communications protocol for embedded systems in automation.

2 CANopen Concepts and Standards
This section provides brief descriptions of CANopen concepts and standards, which are discussed in individual
sections, which are as follows:

● Identifiers and Objects

● The Object Dictionary

● Accessing the Object Dictionary

● Handling Process Data

● Network Management

2.1 Identifiers and Objects

2.1.1 Identifiers
There are three different “identifiers” found in CANopen:

● Node ID

● Object Dictionary Indexes

● COB ID or CAN ID

The Node ID identifies a specific CANopen node. The range for allowed Node IDs is from 1 to 27.

The Object Dictionary Indexes are used to identify a specific variable within a node.

Mobile Controllers
and Measurement
Technology

P
io

n
e

e
ri

n
g

 N
e

w
 T

e
c

h
n

o
lo

g
ie

s

Application
Note

STW Technic, LP

The COB ID or CAN ID identifies a specific message on a network. This identifier is unique and is used for a
specific communication channel, and can also include control bits (i.e. a bit that is used for enable/disable
control).

2.1.2 Identifiers
There are four different “objects” found in CANopen

● The Object Dictionary (OD)

● The Process Data Objects (PDO)

● The Service Data Objects (SDO)

● The Connection Objects (COB)

The Object Dictionary is used to store variables and constants.

Process Data Objects are messages that contain process data.

Service Data Objects are messages that contain service and/or configuration data.

Connection Objects are used whenever a message needs to be assigned to implement a service.

2.2 The Object Dictionary
The Object Dictionary is like a table that stores all the data that is accessible from the network. Each CANopen
node must implement its own Object Dictionary.

The Object Dictionary contains descriptions of CANopen configurations and the functionality of the node that it is
stored in, and can be read or written to by other nodes. In addition, the Object Dictionary is used for other
information that is used by the node. This information can also be used by other nodes on the network.

 Object Dictionary Examples

 Index 2000h stores a single 8-bit value:

 Index 2000h, Subindex 00h = 8-bit value

 Index 2001h stores two 8-bit values:

 Index 2001h, Subindex 00h = 2
 Index 2001h, Subindex 01h = first 8-bit value
 Index 2001h, Subindex 02h = second 8-bit value

The following table represents the organization and structure of the Object Dictionary:

Index Range Description
0000h Reserved

0001h-0FFFh Data Types

1000h-1FFFh Communication Entries

2000h-5FFFh Manufacturer Specific

6000h-9FFFh Device Profile Parameters

A000h-FFFFh Reserved

2.3 Accessing the Object Dictionary
To access the object dictionary, the CANopen message identifier “Service Data Objects (SDO)” is used.

To send an SDO message, you must send a CAN message. There are two reserved message IDs that are
used: one for sending data to a specific node and one for responses that were sent by that node.

Default Message IDs for SDO Communication

Messages are sent using the message ID: 600h + Node ID
The expected reply uses the message ID: 580h + Node ID

An SDO message contains eight bytes of data, of which, the first byte is used as a specification byte. In the
specification byte, the bits are primarily used to specify whether the message contains a read, write, or abort
(error) message. The additional bits in the specification byte are used to indicate if the message is an “expedited
transfer” or a “segmented transfer.”

An “expedited transfer” is a message where all the data that is exchanged is a part of one message. A
“segmented transfer” is a data transfer where all the data can not fit into one message and must be sent in
multiple messages.

Bytes two through four contain the “multiplexer” which is a combination of a 16-bit index and an 8-bit subindex
that identify the Object Dictionary entry that will be accessed. The byte order of the “multiplexer” is: the low byte
of the 16-bit index, the high byte of the 16-bit index, and finally the 8-bit subindex.

Bytes five through eight are used to transmit data. This data is transmitted in either an “expedited” or
“segmented” fashion, as described above.

SDO Message
Byte 1 Bytes 2 - 4 Bytes 5 - 8

Specification Byte Multiplexer Data

Byte Containing the Read,
Write, or Abort Message, and if
the Transfer Type is Expedited

or Segmented

Low Byte of
the 16-Bit

Index

High Byte of
the 16-Bit

Index

8-Bit Sub-
Index

Bit - 5

DATA

Bit - 6

DATA

Bit - 7

DATA

Bit - 8

DATA

2.4 Handling Process Data
In a CAN system, it must be possible for each node to transmit data at any time and to process multiple
variables into a single message. To accomplish this in CANopen, Process Data Objects (PDO) are used.

There are two separate types of PDOs: Transmit Process Data Objects (TPDO) and Receive Process Data
Objects (RPDO). The slave Node sends TPDOs and receives the RPDOs. The Master will receive the TPDOs

MASTER
Sends on:

600h + Node ID

Expects Reply on:
580h + Node ID

NODE 1
Tx SDO: 581h
Rx SDO: 601h

NODE 2
Tx SDO: 582h
Rx SDO: 602h

and sends the RPDOs.

2.4.1 Transmit Process Data Objects (TPDO)
CANopen supports multiple communication methods that allow nodes to transmit data individually (event or time
based), through individual or group polling, or a combination of methods. The four major methods of transmit
triggers are:

● Event Driven

● Time Driven

● Individual Polling

● Synchronized, or Group Polling

The Event Driven transmission method transmits a TPDO message every time the process data changes. An
event can be anytime that the data changes, or only a certain change in the data. The Device Profile specifies
what exactly the event is. Keep in mind that if there are inputs, the data will not be sent until there is a change in
the data (i.e. if the node is started and an input is “on,” the message will not be sent and will appear to be “off”
until the input is turned off and back on again. There must be a change in the data before any information is
sent).

The Time Driven transmission method transmits a TPDO message on a fixed time basis. The fixed time is set,
in milliseconds, through the “Event Timer.” If the Event timer is set to 50 milliseconds, then a TPDO will be sent
every 50 milliseconds. If there are multiple nodes using an “Event Timer” set at the same time, 20 milliseconds,
there is no synchronization between the nodes, resulting in the possibility of the TPDOs being sent within the
same millisecond or at different times within the 20 millisecond time window.

The Individual Polling transmission method uses a message to trigger a node, telling it to send a message.

The Synchronized, or Group Polling transmission method is used to transmit multiple TPDOs to multiple
nodes, at the same time. A “SYNC” signal is sent to all the nodes at once. The SYNC signal is a specific
message with no data, and is used only for synchronization purposes. The signal is sent based on a timer,
which represents a global timer for all nodes, as opposed to the local “event timers” that the Time Driven method
uses.

Synchronized Communication

 Serial Transmission Through CAN

2.4.2 Receive Process Data Objects (RPDO)
In a node's Object Dictionary, the Index area from 1400h to 15FFh is reserved for the RPDO communication
parameters. Once these parameters have been set, the RPDOs can be received.

The parameters for each RPDO are accessible through the Subindex.

Name Subindex Data Type
Number of Entries 0 Unsigned 8-bit

COB ID 1 Unsigned 32-bit

Transmission Type 2 Unsigned 8-bit

Inhibit Time 3 Unsigned 16-bit

Reserved 4 Unsigned 8-bit

Event Timer 5 Unsigned 16-bit

The Number of Entries for a RPDO is set to 5 if an “Event Timer” is used. It is most common to not use the
“Event Timer,” and in which case, the “Number of Entires” should be set to 2.

The COB ID is the CAN message identifier that the RPDO uses. This determines which CAN message should
be received and interpreted.

The Transmission Type determines if the RPDO is processed immediately, or if the node needs to wait for a
time or SYNC signal.

The Inhibit Time is not used for RPDOs. If it is implemented, it should be set to 0.

The Reserved parameter should not be implemented.

The Event Timer may be used to flag an emergency response if the RPDO has not been received by the time
the timer has run out. The timer resets every time the RPDO is received.

Data Processing

Node C Out Buffer C

SYNC SIGNAL

Node A Out Buffer A

Node B Out Buffer B

Data C

Data B

Data A

In Data B

In Data C

In Data A

2.5 Network Management (NMT)

2.5.1 Network Management States
In CANopen, every slave node must implement an Network Management (NMT) state machine. This allows the
slave nodes to operate in different states. The table below demonstrates the states that the slave node can be
in. Note that some of the states changes can occur automatically, but others require the node to receive an
NMT Master message. The Master message can be directed at all nodes or to an individual node, and contains
the new state that the node should switch to.

Network Management of Slave Node States

When a CANopen slave node is powered-up, the node comes out of the “Power-On Reset” state and goes into
the “Initialization” state. In this state, the slave node initializes the application, the CAN/CANopen interfaces, and
communications. The node will then attempt to transmit its boot-up message. When the boot-up message is
transmitted successfully, the slave node will then enter the “Pre-Operational” state.

When the slave node has reached the “Pre-Operational” state, the NMT Master message can be used to switch
the slave node between the main three states: “Pre-Operational,” “Operational,” and “Stopped.”

The NMT Master message can also trigger two reset actions: “Reset Communication” and “Reset Node.” When
the “Reset Communication” message has been sent, the slave node will then reset the CAN/CANopen
communication interfaces, and upon receiving the “Reset Node” command, the slave node will completely reset,
including all peripherals and software. Both of the reset commands will result in a new boot-up message being
transmitted by the slave node, and return it back to the “Pre-Operational” state.

2.5.2 CANopen Messages Produced and Consumed
The main difference in the NMT states is that each state allows certain CANopen communications. The
following table shows which communications may be performed in each of the main states.

NMT State Dependant Communication
Communication

Type
Initializing Pre-Operational Operational Stopped

Boot-Up ✔

SDO ✔ ✔

PDO ✔

SYNC/TIME ✔ ✔

Emergency ✔ ✔

Heartbeat/
Node Guard

✔ ✔ ✔

2.5.3 Heartbeat and Node Guarding

2.5.3.1 Node Guarding
All slave nodes should implement the “Heartbeat” or “Node Guard” services. In “Node Guarding” the NMT
Master polls all the slave nodes for current NMT state information. If the node does not respond within a certain
time window, the Master assumes that the node has been lost and can take appropriate action (i.e. shut down or
restart the system).

Using this method creates a 'safer' system in that the system becomes dependent on the Master and not the
individual nodes. If the Master fails, then the system fails.

2.5.3.1 Heartbeat
The heartbeat method allows for more flexible monitoring options. Each node transmits a 'heartbeat,' which is a
1-byte CAN message that contains the NMT state of the node. A benefit of using the heartbeat method is that
there is no polling required. This cuts the bandwidth that is used for monitoring in half. Another benefit of the
heartbeat method is that no node is dependent of another node. In the node guarding method, all nodes are
dependent of the master node, so if the master fails, then all the nodes are effected. With the heartbeat method,
the failure of a single node doesn't result in the failure of all the nodes.

2.5.4 Emergencies (EMCY)
Each CANopen slave node has an emergency message. The identifier for the CAN message is 80h plus the
Node ID. Each emergency message contains eight data bytes.

The first two data bytes contain the CANopen error code. The third data byte contains a copy of the error
register. The last five data bytes contain specific error codes.

The emergency message is only sent once, and the message remains there until another message is sent to
reset that emergency.

EMCY Message
Bytes 1- 2 Byte 3 Bytes 4 - 8

CANopen Error Code Copy of the Error Register Specific Error Codes

3 Implementing CANopen
This section goes through examples on how to implement in CANopen

3.1 Getting Started
First, open CoDeSys and start a new project from template. Choose the template that matches the controller
that is being used.

3.1.1 Library Management
Go to the “Resources” tab, and then click on the “Library Manager.” In the “Library Manager,” click “Additional
Library,” or press the “Insert” button on your keyboard. When the dialog box opens, select “col2.lib” and click
open.

3.1.2 PLC Configuration and Communications
Now, go to “PLC Configuration.” Click on the name of your controller and then click the “Module Parameters”
tabs. For “LoginType”, make sure the value is set to CANopen. If you are using a controller that has multiple
CAN buses (i.e. the ESX CS), the make sure that you have “CANopen via CAN1” selected.

Now the CAN communications must be configured. Expand the PLC configuration first for CAN0. Under CAN0,
click on “CANMsgObj13,” then on the “Channel Parameters” tab, and set it to RXRTR. This sets up a CAN
Object that will be used for Node Guarding. Now click on “CANMsgObj14,” then on the “Channel Parameters”
tab, and set it to TX. This sets up a CAN Object that will be used for transmitting. Now click on
“CANMsgObj15,” then on the “Channel Parameters” tab, and set it to RX. This sets up a CAN Object that will
be used for Receiving. If you wish to change the message object that CANopen receive, transmit, or node guard
is done on, there are global variables located in the COL2 library that can be changed.

Click on the “Online” tab on the tool bar at the top of the CoDeSys Environment. Under the “Online” tab, select
“Communication Parameters.” Here be sure that you set up communication for CANopen.

3.1.3 Program Set-up
Now, go back to the “POU” tab. Right click in the object window, and add a new object. Create a new “Function
Block” with a unique name (i.e. FB_CONTROL_SLAVE_1). Declare the Function Block in your PLC_PRG “VAR”
section with a unique name that corresponds to the Function Block name. Then make a call to that Function
Block in your program. See the example code below.

The above declaration and Function Block call are marked by red arrows.

EXAMPLE CODE
PROGRAM PLC_PRG
VAR

firstcycle : BOOL := TRUE;
set_relay : FB_SET_RELAIS;
fbTriggerWD : FB_WD_TRIGGERN;
fbControlSlave1 : FB_CONTROL_SLAVE_1;

END_VAR
 IF firstcycle = TRUE THEN

firstcycle := FALSE;
(* --- turn staying alive on --- *)
StayingAlive := TRUE;
(* --- turn relay on --- *)
Relay := TRUE;

END_IF;
(* --- call fbTriggerWD() cyclical to trigger the watchdog --- *)
fbTriggerWD();
(* --- call FB that starts and controls slave node 1 --- *)
fbControlSlave1();

Open the newly created Function Block from the “POU” tab. First, the following declarations must be made.

NOTE: These declarations allow for starting the node, setting up node guarding, and setting up receiving:

EXAMPLE CODE
FUNCTION_BLOCK FB_CONTROL_SLAVE_1
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR

(* --- STATUS --- *)
iStartStatus : INT;
iSendStatus : INT;
iConfigStatus : INT;
iGuardStatus : INT;
iGuardConfStat : INT;
iRXstatus : INT;
Start : BOOL := FALSE;
(* --- MESSAGES --- *)
dwID_Node1 : DWORD;
bDlc_Node1 : BYTE := 8;
abData_Node1 : ARRAY [0..7] OF BYTE;
bHandle_Node1 : BYTE;
bMessages : BYTE;

EXAMPLE CODE
(* --- NODE GUARDING --- *)
bNodeID : BYTE := 1;
wGuardTime : WORD := 20; (* in ms *)
bLifeTimeFactor : BYTE := 3;
(* --- FUNCTIONS ---*)
ConfigRX : FB_COL2_CONFIG_RX_PDO;

 RX : FB_COL2_HANDLE_RX;
HandleGuarding : FB_COL2_HANDLE_GUARDING;

END_VAR

Next, in the code block, the following must be executed:

● Starting the Node
● Configure Receive Messages
● Configure Node Guarding
● Execute Receive Function
● Execute Node Guarding

Starting the Node: To start the node, a call must be made to F_COL2_NMT(bNMTCom,bNodeId).
To start the node, the “bNMTCom” should be “NODE_START.” The “bNodeId” parameter should be
filled out with the node ID of the node that should be started. If '0' is passed through the “node”
parameter, then all nodes will be started. If the node was started correctly, the function will return '0.'

Configure Receive Messages: To configure for receiving messages, a call must be made to
FB_COL2_CONFIG_RX_PDO. The parameter for this function block, “dwID,” is the CAN ID that
the message should be received on. It will return the handle for the node, “bHandle,” and a status
“status.”

Configure Node Guarding: To configure node guarding, a call must be made to
F_COL2_CONFIG_GUARDING(bNodeId, wGuardTime, bLifeTimeFactor). The parameter
“bNodeId” is the Id of the node that will be guarded. The “wGuardTime” parameter sets the distance
of guarding messages, in milliseconds. The “bLifeTimeFactor” parameter sets the number of missed
guardings that will cause detection of a “dead node” The function returns a status.

Execute Receive Function: To receive messages from the node, the function block
FB_COL2_HANDLE_RX must be called. When you call this function block, all new data received in
the messages will be stored in “atCOL2RXPDOs.”

Execute Node Guarding: To start node guarding, a call must be made to the function block
FB_COL2_HANDLE_GUARDING. The function block automatically handles the guarding and will
return two values; “status” and “qNewProblems.” The status of the node guard is stored in
aeCol2GuardingStatus.

Example Code: The example code below implements all of the above function calls. On the first
execution, when boolean “Start” is false, the node is started, the necessary configurations for node
guarding and receiving messages is made, and the boolean “Start” is set to true, so that the program
will not execute this initialization phase again. After the initialization phase is complete, the program
will begin receiving messages, and node guarding automatically.

The receive messages function will begin to receive all new messages . Keep in mind that nothing will
happen until there has been a change in data, or the methods are changed. See the SDO and PDO
sections above.

The node guarding function, runs with the parameters that were configured. In this case the guard time
is set to 20 ms, and the life time factor is set to 2. So the guard checks every 20 ms and if there are 3 or
more errors. If there is a problem, the status of the node is checked. If the node is “dead” then the
node is immediately restarted. See the Node Guarding section above for more information on node
guarding.

EXAMPLE CODE

(* --- On First Execution: Turn NODE1 'ON,' Configure RX, Configure
NODE GUARDING --- *)
IF Start = FALSE THEN
 iStartStatus := F_COL2_NMT(NODE_START,1);
 ConfigRX(dwID := 16#181, bHandle => bHandle_Node1, status =>
 iConfigStatus);
 iGuardConfStat := F_COL2_CONFIG_GUARDING(bNodeID,
 wGuardTime, bLifeTimeFactor);
 Start := TRUE;
ELSE
 (* --- RECEIVE MESSAGE --- *)
 RX(Status => iRXstatus, bNewMessages => bMessages);
 (* --- GUARDING --- *)
 HandleGuarding();
END_IF;

(* --- If There is a New Problem --- *)
IF HandleGuarding.qNewProblem THEN
 (* --- If the Status of the Node is Dead --- *)
 IF aeCOL2GuardingStatus[1] = COL2GuardingDead THEN
 (* --- RESTART the Node --- *)
 F_COL2_NMT(NODE_START, 1);
 END_IF;
END_IF;

3.2 Reading an Input from a Node
After the set-up code has been written, it is very simple to read an input from the node. When a message is
received from the node, it is stored in and can be read from “atCOL2RXPDOs[n].” The following code sets
DigitalOut1 of the Master Controller with the information read from the input of the slave node.

EXAMPLE CODE

(* --- Set DigitalOut1 of the Controller from the Input1 of the Node
--- *)
IF atCOL2RXPDOs[1].abData[0].0 = 0 THEN

DigitalOut1 := 0;
ELSE

DigitalOut1 := 1;
END_IF;

4 Troubleshooting
This section is for basic troubleshooting.

4.1 Check the CAN Bus
Be sure that your CAN Bus is connected correctly and that it is terminated correctly. You can reference the CAN
Bus application note (AN 2001: Troubleshooting CAN Bus) for explicit information regarding troubleshooting the
CAN Bus.

4.2 PLC Configuration
Often times, a problem occurs because something in the PLC Configuration was incorrectly set or not set at all.
Check section 3.1.2 PLC Configuration for specific instructions on PLC Configuration Set-up.

4.3 Node Error
When you initialize a node, a status is sent. Check the CAN messages, if you are not receiving a response, or
you are receiving an error message, then your system will not work correctly.

If you coded status checks into your program, you can easily check the status code for errors.

Check the emergencies (EMCY). There may be something causing an emergency that is affecting your system.

5 Summary
CANopen uses CAN communications to transmit information. It uses an Object Dictionary to store all of the
information that can be used. You can access the Object Dictionary using Service Data Objects (SDO) and
process data can be sent through Process Data Objects (PDO). Node Guarding can be used as safety
precaution and/or a way to ensure that the system is working correctly.

6 Resources
Title Author(s) Published

Embedded Networking with CAN
and CANopen

Olaf Pfeiffer, Andrew Ayre, and
Christian Keydel

2003, RTC Books

COL2 Help File STW Delivered with CoDeSys v2.3
Install

CoDeSys Users Guide STW Delivered with CoDeSys v2.3
Install

7 History
Revision Date Author Comments

1 07/15/2008 J. Yore Created the Application Note

1.1 07/17/2008 J. Yore Added “Heartbeat” Section and Edited
Content

1.2 08/21/2008 A. Jansen Internal Changes

About Us
STW Technic is the premier manufacturer of mobile
electronics for on- and off-highway vehicles. A wholly
owned subsidiary of STW GmbH, Germany, STW
Technic is located in Atlanta, GA.

STW was founded in 1985, and has since provided
electronic controls for world wide market leaders of
agriculture, construction, municipal and military vehicles
as well as many other kinds of mobile equipment. In
2007, STW will sell about 60,000 freely programmable
controllers (more than any other manufacturer) in more
than 200 different variations into these markets.

Due to highly demanding safety requirements for many
applications in mobile equipment (i.e. cranes, fire
equipment, etc.), many of STW’s controllers are
certified based on IEC 61508 (SIL2) and EN 954-1
(Cat. 3) standards. STW is also ISO 9001 certified, and
further certification includes ISO/TS 16949:2002, the
quality standard of the automotive industry.

In addition to the controller product range, STW offers
displays, joysticks, sensors, and other electronic
components to provide a complete electronic system for
vehicles.

STW is also a supplier of robust pressure and force measurement sensors with thin-film, ceramic or silicon technology. STW
specializes in applications in extreme conditions, which includes pressures up to 3,000 bar (44,000 psi) and media
temperatures up to 300 °C (540 °F).

STW is a reliable partner, who not only supplies controllers, but can also train you to develop your own
applications, write the applications for you, maintain inventory for you, and do everything a control engineering
department would do.

STW Technic, LP
3000 Northwoods Pkwy.
Suite 260
Norcross, GA 30071

Phone: (770) 242-1002
Fax: (770) 242-1006

Disclaimer: The inf ormation in this document is prov ided in connection with STW products. No license, express or implied to any intellectual property right is
granted by this document or in connection with the sale of STW products. STW makes no representations or warranties with respect to the accuracy or
completeness of the contents of this document and reserv es the right to make changes to specif ications and product descriptions at any time without notice.
STW does not make any commitment to update the inf ormation contained herein.

	1 Introduction
	2 CANopen Concepts and Standards
	2.1 Identifiers and Objects
	2.1.1 Identifiers
	2.1.2 Identifiers
	2.2 The Object Dictionary
	2.3 Accessing the Object Dictionary
	2.4 Handling Process Data
	2.4.1 Transmit Process Data Objects (TPDO)
	2.4.2 Receive Process Data Objects (RPDO)
	2.5 Network Management (NMT)
	2.5.1 Network Management States
	2.5.2 CANopen Messages Produced and Consumed
	2.5.3 Heartbeat and Node Guarding
	2.5.3.1 Node Guarding
	2.5.4 Emergencies (EMCY)

	3 Implementing CANopen
	3.1 Getting Started
	3.1.1 Library Management
	3.1.2 PLC Configuration and Communications
	3.1.3 Program Set-up
	3.2 Reading an Input from a Node

	4 Troubleshooting
	4.1 Check the CAN Bus
	4.2 PLC Configuration
	4.3 Node Error

	5 Summary
	6 Resources
	7 History

