VIRTEC Foundation Library User Guide

Copyright (c) 2016 DISTek Integration, Inc.

Table of Contents

oL oY L0 Lot [) o IFFU OO OO TR 4
L2 4 1= T 5
D=3 00010 (0] OO OO TS 5
NYCTuw oV U)o T8 S0 100 oL =1 o) o T 5
Foundation Data Structures and Required Declarations.........omssesssesennn: 5
PIPES oA E AR E s 6
TrANSPOIT SESSIONS uuveiereeeererererressse s ss s s e s s p s 7
FUNCLIONALITIES ...ttt se s bbb nnns 7
DiagnostiC TrOUDIE COAES......ommrerreereeree s sss e sss s ss s s ssssesnsnes 8

RX MESSAZE QUEUEocvuririrrers s s 8

Y00 022 U <0 1 PR 8

L0 1003 T U (o) o OO OT TSRO 9
Foundation INitialiZation. ... ssessessessessessenses 10
Scheduling a FOundation TasK ... ssssssssssssssssssssssssaes 10
USING the FOUNAATION ..ceveeeeeeeeeeee e 11
RECEIVING wouiitititist i bbb e 11
AVailable API FUNCHIONS .cuiuiereereereeeeseiseesesseesessessessessessessesssssesse s sssssnssneans 11
02T 0 000 o F TP 11
AVailable API FUNCHIONS .cuieiereereereeeereisetsesseesessessessessessessesssssessess s ssssssssneans 11

06 14 (01 10 =P 11
AVailable API FUNCHIONS .cuiuiereereereereeseiseesesseesessessessessessessessessesse s ssssssssneans 11

T) 0P 11
AVailable API FUNCHIONS .ocieeereereereeeereisetsesssesessessessessessessesssssesse s sssssssssssssssssessssssssssssssssssaneans 11
WTItiNg YOUT OWIN FIlET e seseas 11
DEVEIOPET NOLES.....ctueueeeeaesrereesressessses s ses s s s s bbb 12
AdAIeSS ClaIMING.. .. e bbb s s s nsas 12
AVailable API FUNCHIONS .t sesessessessessessessessessessessesse s ssessesse s sssssesssssessessenns 12

DEVEIOPET NOLES.....ctueueeeesesrereesressessses s ses s s s bbb R 12

NEtWOIrK MaAna@EIMENT.......c.oceurereceeeeereeesesseseseessessess e s esss e s bbbt 12

AVvailable API FUNCLIONS ..t sessessssessssssesssssssesssssssessssssssssssssssssssssssasssssnsassans 12
DTN (0] L) ol (] X 12
00210] 0 o) o o PP TT 12
AVailable API FUNCHIONS .cuieeeriereereereereesessesseesessessessessessessessessesse s ssesse s ssssssesneans 12
DEVEIOPET INOTES ...t s st st 13

16 12 R §§ (o= [) o TP 13
AVailable API FUNCHIONS .cuieeereereereereereesessesseesessessessessessessessessesse s ssesse s sssssessesseans 13

D EVEIOPET INOTES...uiuririerereererresisessess s st 13
UBIITIES cuvrvreurersssesssessesssssses st bbb 13
Available API FUNCLIONS ... ssssssssssessssssesssssssesssssssesssssssssssssssssssssssssssssssssssnns 13
DT (0] L) ol (0] PP 13
100010 0 TP 14
AVailable API FUNCHONS .cuieieeereereeeereisessesseesessessessessessessessessssse s ssesssssesss s sssssssssssssssssessssssssesseseans 14
DEVEIOPET INOTES....eicrcereirersesisessesss s bbb s et 14

F N o 0 2 ES =) 1= o Lol 15
D LT 74 011 15
ENUMETATIONS wovvecericesreeseesesessesesssesesssessssssess s s s e ss s s ssssesssssesssssssessssssssssessssssssssnens 16
TISOBUS_DIilP@CTION_T orrirereireusessessessessessessessessessesse s sse s 16
FUNCTIONS ottt s e s e et e s bt 16
AddressClaim_ISCLlaimed () ..t sssssssssssssssses 16
Filter DestinationSpeCifiCTOME () .sssssssssssssssssssens 16
Filter_GlobalOrWorkingSetOrDestinationSpecificToMe () .. 17
Filter_SentFromMyWorKingSet () . sssssssssssssesssssssssssssssssssssesssens 17
Filter_SentTOMYyWOrKIiNgSet () . isssssssssssssssssssssssssssssessssssesssssssssssssssnees 18
Filter_SentToWorkingSetMemMber () . sessssssssssssssesssssssssssssssssssssesssens 18
FOUNAAtIionN_TNIit () s sssssssss s sssssssssssssssssssesssssssssssssssssssssssessnsas 19
Foundation_PacketHandler RegisStTer () . sssssssssssssens 19
Foundation_PacketHandler Unregister () .. s ssssssssssssens 20
FOUNAATI0N_TASK() cirirrrrerrerresisesesssssesssesnens 20
=R o o Y=Y To 1 o= Lol =3 o () PN 20
SOTFtWAreId REZISTEIN () e snssnes 21

SOTEWAreId _UNregisTer () wresssssssssssssssessssssesssssssssssssssssssssssssssssssssssssssesssssnssns 22

SOTFtWAreIdLiSt TNIitT () s snsanes 22

SOTEWAreTiMErLiST TNIT () st ssssssssssssssssnssnes 22
SOTEWArETIMEr _GET () crerrerreereerserersnessessesssssesse sttt 23
SoftwareTimer _PeriodiCTask () . sssans 23
SOTEWAreTimer REZISTEIN () . rererisrsesssssssssssssessessssssesssansanes 23
SOTEWArETIMEr _SET () s s s s s st s s st snsssssssansssnsans 24
SoftWareTimer _UNregiSTer () wssesesissassaes 24
SEPING _LENEGTN() cosrsise st bbb 24
String LimitedLengTh() et ssssnssnes 25
TrANSPOrT_ADOINT () coecrcerreeersensesseesesssesssesesss s sss s s ss st s ssss s sssssnes 25
Transport_MessageHandler ReZISTEIr () . iissssssssssssssssssssssssssssssnss 26
Transport_MessageHandler _UNregiSter (). isssssssssssssssssssssssnss 26
Transport_SENAMESSAEE () wrssssssssssssss s ssssssanes 27
UT1i1ity MemOPrYCOPY () wrrnismessesnessessessessessessessesssssessssssssesssssessssssssssssssesssssesssssssssssssssssssnes 27
UT1i1ity TOLOWEPCASE () wrrrrrrerrisressessesessessessessesssssesssssessessessssssssesssssssssssessssssssssssssssssssssssssssnes 27
UT1i1lity TOUPPEIrCASE () wrrrisessesnessessessessessessessessesssssessesses 28
1Y = ol 01 TP 28
MAKE_ACKNOW1EAZE S () worrererrerrerrersisnessessessessessessesnessssssssessnens 28
MAKE_ DTC_ LIS T(() coorrresssccessseseessesseeseesssssssssssssssssssssssssssessssssssssssssssssssssssssssssssessssssssssssssssssssssseeee 28
VAN QS S eTU T T F= s Ko o T () TP 29
MAKE_Foundation_PacketHandler_List S() ..o 30
MAKE_TISOBUS_AddressSClaim_S () cessens 30
MAKE_TISOBUS_Certification_T() .ssssssssssssssssssssssssssssssssssssnes 31
MAKE_TISOBUS_DiagnosSticProtoCol_T() wiessssssssssssssssesssssssssssssssees 32
MAKE_TISOBUS_ECUTA_T () soooceeeeerreesssssesssessssessssssssssssseessssssssssssssessssssssssssesssssssssssssssssssssssssssssssees 32
MAKE_TISOBUS_FUNCtionalitieS_T () cuisssssssssssssssesssssssssssssssssnes 33
MAKE_ISOBUS_NGME_ T () cooccceereeeeemeeseeseesssssssssssssssssssssssssssssssessssssssssssssssssssssssssssesssssssssssssssessssssssseees 33
MAKE_ISOBUS_ProdUCTIA_ T () coueeeeoeossssssessccsesssesesssssssessssssssssssssssssssssssssssesssssssssssssssssssssssesssseeen 34
MAKE_ISOBUS_SOFEWArEIA T () cooeeooooossesescccsesseesesseesssessssssssssssssssssssssssssssessssssssssssssssssssssssssssesen 34
MAKE_ISOBUS_TranSPOPrt_T () csesses 34
MAKE _LanguageCallbackLiSt T() .sssesssssssssesssssesssssssssssssssssssssssssssssens 35
MAKE_MEMOPY T () tuvveureerremessssmesssssssssesssssssssssssssessssssessssssesssssssssssssssssssssssesssssssssssssssssssnsssessnssnsssssssssnss 35

MAKE_REQUEST S () rerrerrerrersmrsessssssesssssssssessssssessssssssssssssssessssssessssssesssssssssssssssssssssssesssssssssssssssssssnssssssnes 35

MAKE _SOTEWArETLIMEP T () corirecresesessssssesssassasses
MAKE_SOTftWareTimerLiSt T () . inssnsssees
SETUCTULES vt iessisese e AR eE A e
FOUNAATION _T oottt
ISOBUS_PacCKetHEAUEI _T .. ssssssssas

Introduction

ISO 11783 (ISOBUS) consists of the following parts, under the general title Tractors and
machinery for agriculture and forestry - Serial control and communications data network:

e Part 1: General standard for mobile data communication
e Part2: Physical layer

e Part 3: Data link layer

e Part4: Network layer

e Part5: Network management

e Part 6: Virtual Terminal

e Part 7: Implement messages application layer

e Part 8: Power train messages

e Part9: Tractor ECU

e Part 10: Task controller and management information system data interchange
e Part 11: Mobile data element dictionary

e Part 12: Diagnostics services

e Part13: File server

The parts shown above in bold are included in the VIRTEC Foundation Library.

Overview

Application Code

VTClient

Foundation Layer

Platform Layer

VIRTEC Layers block diagram
The foundation layer provides core ISOBUS functionality, including:

e Network NAME Table Management

e Address Claiming

e TP and ETP message transport management
e Packetrouting

e Request and acknowledgement handling

e ECU, Software, and Product ID management
e Diagnostic protocols

Definitions

Message
A multi-packet message. Within the VIRTEC libraries, messages are of type
ISOBUS_Message_T.See [Multi-Packet Messages].

Packet
A single packet message. Within the VIRTEC libraries, packet are of type ISOBUS_Packet_T.
See [Single Packet Messages].

Setting up Foundation

Foundation Data Structures and Required Declarations

In order to develop an ISOBUS application, several foundation data structures must be
declared.

Pipes

Pipes allow for data to be transported between different parts of an application. Pipes are
declared as type Pipe_T while a collection of pipes are declared as type Pipes_T

Pipes have a name, a priority and a size.

name is self explanatory
priority is the scheduler priority upper limit for all tasks that can access this pipe
size is the maximum number of bytes the pipe can hold

Declaring pipes and a pipe collection

The easiest method of creating a collection of pipes for use in your application is by storing
pipe information in a separate header file and using the Foundation's built-in macros, along
with some custom ones for reading the appropriate information from the header file.

Example Pipes.h

Example

#ifndef PIPE
#tdefine PIPE(name, priority, size)
#endif //PIPE

//PIPE(name,priority,size)

PIPE(Pipe®, MY_MUTEX_PRIORITY, 8)
PIPE(Pipel, MY _MUTEX_PRIORITY, 8)
PIPE(Pipe2, MY_MUTEX_PRIORITY, 8)
PIPE(Pipe3, MY_MUTEX_PRIORITY, 8)
PIPE(Pipe4, MY_MUTEX_PRIORITY, 256)
PIPE(Pipe5, MY_MUTEX_PRIORITY, 256)
PIPE(Pipe6, MY_MUTEX_PRIORITY, 512)
PIPE(Pipe7, MY_MUTEX_PRIORITY, 512)
PIPE(Pipe8, MY_MUTEX_PRIORITY, 1785)
PIPE(Pipe9, MY_MUTEX_PRIORITY, 1785)

#undef PIPE
Pipe Initialization Code

Example

// Create 1individual Pipe arrays (for pipe collection)

#tdefine PIPE(name, priority, size) static MAKE_PIPE_ARRAY(name,
MinAddressable T, size);

#include "Pipes.h"

// Pipe Array
static Pipe T MyApp PipeArray[] =
{

#tdefine PIPE(name, priority, size) MAKE_Pipe T(name, priority),
#include "Pipes.h"

s

// Final Pipe Collection
static Pipes_T MyApp_PipeCollection = MAKE_Pipes_T(MyApp_PipeArray,
MY_MUTEX_PRIORITY);

Transport Sessions

Transport sessions hold all the necessary information to keep track of TP and ETP
transport sessions in progress.

Declaring Transport Sessions
Transport sessions are declared as type ISOBUS_TransportSession_T

You'll want to ensure that your foundation includes enough transport sessions to support
the requirements of your application.

Example

// TP session array for Application
static ISOBUS_TransportSession T MyApp TP _Sessions[4];

Functionalities

Functionalities are used for conformance testing and designate the capabilities of your
application. If your application will not be conformance tested, you do not need to include
them. At a minimum, an application must include the Minimum Control Function
functionality.

For VTClient applications, you will also need to include the Universal Terminal Working Set
functionality.

The Foundation library and the VTClient library include MAKE_XXXX macros you can use to
declare your applications functionalities. See the example code below for usage.

Declaring functionalities

Example

// Functionalities supported by this application
static const Functionalities T MyApp_Functionalities[] =
{
// Supports Minimum Control Functionality
MAKE_Functionalities T MinimumControlFunction(),
// Supports Universal Terminal
MAKE_Functionalities _T__ UniversalTerminal WorkingSet()

}s

Diagnostic Trouble Codes

If you application needs to implement Diagnostics, a DTC structure will need to be
declared.

Declaring the DTC Structure

Diagnostics can be declared easily using the MAKE_DTC_T macro. The first parameter is the
SPN (Suspect Parameter Number) and the second is the FMI (Failure Mode Indicator).

Example

// DTCs used by MyApp
static const DTC_T MyApp DTCArray[] =

{
s

MAKE_DTC_T(©, @)

static DTC Status T
MyApp_ DTCStatusArray[sizeof(MyApp DTCArray)/sizeof(DTC_T)];

RX Message Queue

Received packets can be queued to lower processing priority. This is an optional feature
depending on the requirements of your application.

Declaring an RX Message Queue

The foundation library comes with several macros to simplify the code necessary to declare
an RX queue. Please see the below example code for usage.

Example

// Queue used for receive packets to lLower processing priority
static MAKE_QUEUE_ARRAY(MyApp RxQueueArray, ISOBUS Packet T, 50);
static Queue_ T MyApp_RxQueue = MAKE_ Queue_ T(MyApp_ RxQueueArray,
MY_MUTEX_PRIORITY);

Software ID
The software will require a software version to be associated with the Foundation.
Declaring a Software ID

The are several macros to simplify the code necessary to declare and register a software ID.
Please see the below example code for usage.

Example

// Version of App Software (Product,Major,minor, build)
#tdefine APP_SOFTWARE_VERSION SoftwareVersion("MyApp",0,0,1)

// Initialize Software ID structure for the App software
Softwareld T MyApp_ SoftwareIldEntry = MAKE_SoftwareId T(APP_SOFTWARE_VERSION);

// Register Software ID to the List
Softwareld Register(&Solution_Softwareld List, &MyApp_ SoftwareldEntry);

Foundation

Declaring a Foundation

Example

// Create Foundation Functionality structure
Foundation_T MyApp_Foundation =
MAKE_Foundation_T(
&Solution_SwTimerList,
&\etworks[0],

// K 3k 3k 5k 3k 3k >k >k 3k 5k 5k 3k >k >k 3k 3k 5k 5k 5k >k >k 3k Sk 5k 5k 3k >k 3k 3k ok 5k >k >k >k 3k 3k 5k 5k 5k >k >k 3k ok 5k >k >k >k 3k 3k 5k 5k >k >k >k >k >k >k >k >k >k >k >k

// sa_primary = 128 (6x80) Primary source address
// choose _sa fn = NULL (use built-in 128-247 range)
// priority = PL_8

/ 3k 3k 3k sk >k sk 3k skosk skosk sk sk sk Skosk skosk sk sk sk sk sk sk ok sk sk sk sk >k sk sk sk sk sk sk sk sk sk sk sk sk sk >k sk sk sk ok sk sk 3k sk sk sk ok sk ok >k sk sk sk k
MAKE_ISOBUS_ AddressClaim_S(128, NULL, PL_8),

// K 3k 3k 5k 3k >k >k >k 3k 5k 5k >k %k >k 3k 3k 5k 5k 5k >k >k 3k 3k 5k 5k 3k >k 3k 3k ok 5k >k >k >k 3k 3k 5k 5k 5k >k >k 3k ok 5k >k >k >k 3k 3k 5k 5k >k >k >k >k >k >k >k >k %k k >k

// self configurable

1, this 1is a Self-configurable address

// industry group = 2, Agricultural and forestry equipment
// device class instance = 0,

// device_class = 2,

// function = 129, On-board Diagnostic Unit

// function_instance = 0,

// ecu_1instance = 3,

// manufacturer _code = 514, DISTek Integration, Inc

// 1identity number =1

/ 3k 3k 3k 3k 3k 3k 3k sk >k >k 3k 5k 5k 3k 3k 3k 3k >k 3k 3k 3k 3k 3k 3k sk sk sk 3k 3k sk 3k 3k sk sk sk >k 3k 3k 3k 3k Sk 3k sk 3k 3k sk 3k 3k Sk sk sk sk sk ok sk ok sk sk sk sk ok ok

MAKE_ISOBUS Name T(1,2,0,2,129,0,3,514,1),

MAKE_ISOBUS_Transport_T(MY_MUTEX_PRIORITY, 2, 16, MyApp_TP_Sessions,
MyApp_PipeCollection),

MAKE_LanguageCallbackList_T(MY_MUTEX_PRIORITY),

MAKE_ISOBUS_EcuId_T(MY_MUTEX_PRIORITY, Solution_Eculd_Fields),

MAKE_ISOBUS_ SoftwarelId T(PL_6, Solution_SoftwareIld List),

MAKE_ISOBUS_ProductId_T(MY_MUTEX_PRIORITY, Solution_ProductId_Fields),

MAKE_ISOBUS_DiagnosticProtocol T(ECU_DIAGNOSTICS_ISO_11783_LEVEL_1,
MY_MUTEX_PRIORITY),

MAKE_DTC_List_T(MyApp_DTCArray, MyApp DTCStatusArray, MY _MUTEX_PRIORITY),

MAKE_ISOBUS_Functionalities_T(MY_MUTEX_PRIORITY, MyApp_ Functionalities),

MAKE_ISOBUS Certification T(14, ©, 514, 7, @, 1, 0, 0, 0, 0, 0, 1, 1, 9,
@) @) 0) @)J

MAKE_Memory_T(Memory_Read, Memory Write),

MAKE_Foundation_ PacketHandler List S(&MyApp RxQueue, NULL,
MY_MUTEX_PRIORITY),

MAKE_Request_S(MY_MUTEX_PRIORITY),
MAKE_Acknowledge S(MY_MUTEX_PRIORITY)

)5
Foundation Initialization

Once the Pipes and Foundation_T structure have been set up, using the corresponding
macros, they will need to be initialized. Within the initialization function for the
application, the Pipes_Init(&<pipe collection name>) function and
Foundation_Init(&<Foundation_ T structure name>) function will need to be called.
Neither of these functions will return any value.

See example code below for a function definition of a foundation initialization routine.

Example

void MyApp ISOBUS Init(void)
{
Pipes_Init(&MyApp_PipeCollection);
Foundation_Init(&MyApp_ Foundation);
}

Scheduling a Foundation Task

There are three functions that must be referenced within the task scheduler pertaining to
the Foundation.

e Aninitialization function
e The periodic Foundation_Task function
e The Foundation_Uninit function

The initialization function you must write yourself, an example is included above. The other
two functions are part of the library and must therefore be passed a pointer to your
foundation structure. See the example code below for guidance.

Example

// Init function
INIT(MyApp_ISOBUS_Init)

// Task function, period (ms), priority
LIBRARY_TASK(Foundation_ Task, &MyApp Foundation, 80, PL_10)

// Exit function
LIBRARY_EXIT(Foundation_Uninit, &MyApp Foundation)

Using the Foundation
Receiving

Available API Functions
e Transport_MessageHandler_Register()
e Transport_MessageHandler_Unregister()

Transmitting

Available API Functions
e Transport_SendMessage()

Canceling

Available API Functions
e Transport_Abort()

Filtering

Available API Functions

e Filter_DestinationSpecificToMe()
e Filter_SentToMyWorkingSet()

¢ Filter_GlobalOrWorkingSetOrDestinationSpecificToMe()

e Filter_SentToWorkingSetMember()
e Filter_SentFromMyWorkingSet()

Writing your own Filter

The Filter function receives a pointer to the incoming packet, and to the application's
struct Foundation_S structure. This should grant the function access to all the
information necessary to determine whether or not to filter a packet. This includes access
to the Network_T structure via the struct Foundation_S structure.

To accept the packet, return TRUE. To reject the packet, return FALSE.

Filter_<name> () functions must conform to the following Function Prototype (where the

actual name of the function is user-defined):

Example

bool t Filter Name(const ISOBUS Packet T *packet, const struct Foundation_S

*foundation);

Developer Notes

Filter functions limit the processing of packets to those of concern. A number of
Filter_<name> () functions are provided by the VIRTEC Foundation library. A user may
also write their own.

Note: Because the application is typically interested in packets destined globally, to the
working set, or to the application's claimed address, the default filter used in most cases is
Filter_GlobalOrWorkingSetOrDestinationSpecificToMe().

Address Claiming

Available API Functions
¢ AddressClaim_IsClaimed()

Developer Notes

Address claiming is handled automatically by the Foundation library. After initialization the
Foundation will attempt to claim the address specified in your Foundation data structure. If
the desired address cannot be claimed, the foundation will attempt to claim the next
available address within the range 128 - 247. If you opted to provide a source address
function to the MAKE_ISOBUS_AddressClaim_S macro, then that user-defined function will
be called to determine the next source address to try.

In your application code, the only address claim function that may be of use to you is the
AddressClaim_IsClaimed() function, which will return a boolean indicating whether or
not the foundation has claimed an address. The other address claim functions are used
internally in the foundation and should not be used.

Network Management

Available API Functions
e Network_SendPacket()

Developer Notes
The Network Management API Functions are used to transport data over a CAN network.

The Network_SendPacket () function sends a packet over the ISOBUS, while respecting the
ISOBUS Polite Address Claim rules.

Transport

Available API Functions
e Transport_SendMessage()
e Transport_Abort()

Developer Notes

Transport sessions handle the transfer of multi-packet data on the bus using TP or ETP
protocol. The decision of which (TP or ETP) is handled by the Foundation automatically
and determined by the size of the data you want to transfer.

For more detailed information on sending multi-packet messages, please see the section of
this document titled Transmitting and Receiving Messages.

Identification

Available API Functions

o SoftwareldList_Init()

e Softwareld_Register()

e Softwareld_Unregister()

Developer Notes

These API functions should be used within your application to register your software with
the linked list of Software IDs.

Utilities

Available API Functions
e Utility_MemoryCopy()
e Utility_ToLowerCase()
e Utility_ToUpperCase()
e String_Length()

e String_LimitedLength()

Developer Notes

The Utility API Functions allow you to perform a few basic operations without having to
write your own function to achieve the same interaction with the Foundation.

One of the most useful of these utility API functions is the Utility_MemoryCopy () which
allows you to input a pointer to a source, and another pointer to a destination, and the
Utility API function will copy the data in the memory location of the source pointer into the
memory location of the destination pointer.

The Utility TolLowerCase() and Utility ToUppercCase() API functions are fairly straight-
forward. They take the input character(s) and convert them, as described in the function
name, either from uppercase to lower case, or from lower case to upper case.

The String_Length() API function is also fairly strait-forward. It returns the size of the
string to which the input pointer is pointing to. The String_ LimitedLength() API function
performs the same operation, but it also allows you to set a limit on the size that will be

returned. If the string in question is longer than the specified limit, the function will return
the value of the specified limit.

Timing

Available API Functions

e SoftwareTimerList_Init()

e SoftwareTimer_PeriodicTask()
e SoftwareTimer_Register()

e SoftwareTimer_Unregister()

e SoftwareTimer_Get()

e SoftwareTimer_Set()

Developer Notes

Software timers allow you to track the passage of time within your application. The
foundation maintains a list of software timers.

To create a timer for use in your application, you can use the Foundation's
[MAKE_SoftwareTimer_T] macro.

Example

SoftwareTimer_T my_timer = MAKE_SoftwareTimer_T();

To create a list of timers for use in your application, you can use the Foundation library's
[MAKE_SoftwareTimerList_T] macro. See example below. In this example, we are creating a
list of software timers, specifying that the the periodic timers maintenance task
SoftwareTimer_PeriodicTask() will be called by the task scheduler every 10 milliseconds,
and that the ceiling priority of tasks that can access the software timer is "PRIORITY_MAX".
Note that period specified here (10 milliseconds in this example) must match the actual
task scheduling period in your task scheduler, for calls to the
SoftwareTimer_PeriodicTask() function.

Example

SoftwareTimerList T Solution SwTimerlList =
MAKE_SoftwareTimerList T(milliseconds(10), PRIORITY_MAX);

Once a timer list has been declared, the list must be initialized with the
SoftwareTimerList_Init() function. Simply pass it a pointer to the timer list you have
declared.

Once your timers list has been declared, initialized, and scheduled in your task scheduler,
you can then register new timers to your timer list as well as unregister previously
registered timers. To do this you can use the register and unregister functions listed above.

Once registered, a timer's value can be set using the SoftwareTimer_Set() function. There
are a series of macros that will help you set a timer using the proper units you wish to use.

The macros will generate the proper value, of the proper data type ([Time_T]). These
macros are:

e microseconds(x)
e milliseconds(x)
e seconds(x)

Example

SoftwareTimer_Set(&my timer, milliseconds(109));

Once a timer's value is set, its value will be decremented in real time by the scheduled
periodic task until it reaches 0. For code readability the value 0, of type Time_T can be
returned by the macro TIMER_EXPIRED. See the example below for usage, which also
demonstrates usage of the SoftwareTimer_Get function:

Example

if(SoftwareTimer_Get(&my_timer) == TIMER_EXPIRED)
{

}

APl Reference

Data Types

AddressClaim_PendingEchoCount_T: uint8_t
CAN_Identifier_T:uint32_t
DTC_Index_T:uintl6_t
DTC_OccurrenceCount_T: uint8_t
DTC_T:uint8_t
EcuDiagnosticProtocolId_T: uint8_t
Frequency T:uint32_t
FunctionalityGeneration_T: uint8_t
ISOBUS_DLC_T:uint32_t
ISOBUS_GroupFunction_T: uint8_t
ISOBUS_ManufacturerCode_T:uintl6_t
ISOBUS_PacketData_T: unsigned char
ISOBUS_PacketPriority_T:uint8_t
ISOBUS_PGN_T: uint32_t
ISOBUS_PacketSequence_T:uint32_t
ISOBUS_TransportRetry T:uint8 t
NameTableIndex_Bitfield T:uint32_t
NameTableIndex_T: uint8_t

SourceAddress_T: uint8_t
Time_T:uint32_t

Enumerations

ISOBUS Direction_T

This enum is used to identify whether an ISOBUS packet/message is being sent or received
by the CAN hardware

Signature
typedef enum ISOBUS_Direction_E ISOBUS_Direction_T
Members

ISOBUS_RX
ISOBUS packet is received by the CAN hardware

ISOBUS_TX
ISOBUS packet is sent by the CAN hardware

Functions
AddressClaim_IsClaimed()

API indicating whether the application has an address. Indicates that the application has
claimed an address and is permitted to actively participate (send messages) on the bus.

Signature
bool_t AddressClaim_IsClaimed(const Foundation_T *foundation)
Parameters

foundation
Pointer to App Foundation_T structure

Returns

bool_t
TRUE The application may send messages
FALSE The application may not send messages

Filter_DestinationSpecificToMe()

Filter packets sent only to my claimed source address. Accepts only messages sent
destination specific to the source address claimed by the supplied foundation structure.
All other packets are rejected.

Signature

bool t Filter DestinationSpecificToMe(const ISOBUS Packet T *packet, const
struct Foundation_S *foundation)

Parameters

packet
Incoming packet to test

foundation
Pointer to the application's Foundation structure

Returns

bool_t
TRUE Packet passes the filter (process)
FALSE Packet failed the filter (drop)

Filter_GlobalOrWorkingSetOrDestinationSpecificToMe()

Filter packets sent to my claimed source address, globally, or to my working set master.
Accepts only messages sent destination specific to the source address claimed by the
supplied foundation structure, to the working set master address, or sent globally. All
other packets are rejected.

Signature

bool_t Filter_GlobalOrWorkingSetOrDestinationSpecificToMe(const
ISOBUS Packet T *packet, const struct Foundation_S *foundation)

Parameters

packet
Incoming packet to test

foundation
Pointer to the application's Foundation structure

Returns

bool_t
TRUE Packet passes the filter (process)
FALSE Packet failed the filter (drop)

Filter_SentFromMyWorkingSet()

Filter packets sent from members of my working set. Accepts only messages sent from a
member of my working set. All other packets are rejected.

Note: This filter will cause all of this application's transmitted packets to also be received!

Signature

bool t Filter SentFromMyWorkingSet(const ISOBUS Packet T *packet, const
struct Foundation_S *foundation)

Parameters

packet
Incoming packet to test

foundation
Pointer to the application's Foundation structure

Returns

bool_t
TRUE Packet passes the filter (process)
FALSE Packet failed the filter (drop)

Filter_SentToMyWorkingSet()

Filter packets sent only to my working set master. Accepts only messages sent destination
specific to the source address claimed by the supplied foundation structure. All other
packets are rejected.

Signature

bool t Filter_SentToMyWorkingSet(const ISOBUS Packet T *packet, const struct
Foundation_S *foundation)

Parameters

packet
Incoming packet to test

foundation
Pointer to the application's Foundation structure

Returns

bool_t
TRUE Packet passes the filter (process)
FALSE Packet failed the filter (drop)

Filter_SentToWorkingSetMember ()

Filter packets to a member of my working set. Accepts only messages sent to a member of
my working set. All other packets are rejected.

Signature

bool t Filter SentToWorkingSetMember(const ISOBUS Packet T *packet, const
struct Foundation_S *foundation)

Parameters

packet
Incoming packet to test

foundation
Pointer to the application's Foundation structure

Returns

bool_t
TRUE Packet passes the filter (process)
FALSE Packet failed the filter (drop)

Foundation_Init()

Meta-task for initializing VIRTEC Foundation structure for one app
Signature

void Foundation_ Init(Foundation_ T *foundation)
Parameters

foundation
Pointer to the application's Foundation structure

Returns

(void)

Foundation_PacketHandler_Register()

Register a PacketHandler with a application's Foundation structure
Signature

bool_t Foundation_PacketHandler_ Register(Foundation_T *foundation, struct
Foundation_PacketHandler Node_ S *handler)

Parameters

foundation
Pointer to the application's Foundation structure

handler
Packet handler struct to unregister

Returns

bool_t
TRUE Packet handler was successfully registered
FALSE Packet handler was not registered (perhaps already registered?)

Foundation_PacketHandler_Unregister()
Unregister a PacketHandler with a application's Foundation structure

Signature

bool_t Foundation_PacketHandler Unregister(Foundation_T *foundation, struct
Foundation_PacketHandler_Node_S *handler)

Parameters

foundation
Pointer to the application's Foundation structure

handler
Packet handler struct to unregister

Returns

bool_t
TRUE Packet handler was successfully unregistered
FALSE Packet handler was not unregistered (was not registered in this list)

Foundation_Task()

Meta-task for processing all VIRTEC Foundation tasks for one app
Signature

void Foundation_Task(Foundation T *foundation)
Parameters

foundation
Pointer to the application's Foundation structure

Returns
(void)
Network_SendPacket()

Send packet on CAN interface and enforce Address Claim rules. Acts as a gateway to enforce
the ISOBUS Polite Address Claim rules. Don't send any massages until the NAME Table is
populated. Then send all AddressClaim messages, and application messages if the
application has claimed an address, and the message is not destination spicific or the
destination is global or the destination address has also been claimed.

1. Return value
1. TRUE indicates that the CAN driver accepted responsibility to ensure the packet
goes out on the bus. This may mean that the CAN packet has been placed on the
hardware to send, or that it is placed in a Queue and will be sent when there is
opportunity.

2. FALSE indicates that the CAN driver is unable to accept responsibility to send
the packet, so the calling task should try again later.

2. Callback

1. The callback function pointer is called when the packet is actually sent on the
bus. This typically corresponds to the transmit interrupt after the packet is
sent. In some cases, the CAN driver may call the callback when the packet is
placed on the hardware.

2. Passing NULL as the callback parameter is valid, and indicates that no callback
is provided.

Signature

bool_t Network_ SendPacket(ISOBUS Packet T *iso packet, const
ISOBUS Callback T *callback, const Foundation T *foundation)

Parameters

iso_packet
ISOBUS packet to be sent on the bus

callback
Callback to be called once packet is successfully sent

foundation
Pointer to the application's Foundation structure

Returns

bool_t
TRUE Packet queued to be sent
FALSE For some reason, packet will not be sent (at this time)

SoftwareId_Register()

Register a Softwareld_T structure

Signature

bool_t SoftwareId_Register(SoftwareIdList T *1ist, Softwareld T *swid)
Parameters

list
Software ID list with which to register

swid
Pointer to the Software_ID structure to be registered

Returns

bool_t
TRUE Successfully registered
FALSE Registration failed

Softwareld_Unregister()

Register a Softwareld_T structure

Signature

bool_t SoftwareId_Unregister(SoftwareIdlList_T *1list, SoftwareId T *swid)
Parameters

list
Software ID list with which to unregister

swid
Pointer to the Software_ID structure to be unregistered

Returns

bool_t
TRUE Successfully unregistered
FALSE Unregistered failed

SoftwareIdList_Init()

Initialize the Software ID List

Signature

void SoftwareldList_Init(SoftwareIdList T *list)
Parameters

list
Software ID List to initialize

Returns

(void)

SoftwareTimerList_Init()

Initialize the Software Timer List

Signature

void SoftwareTimerList_Init(SoftwareTimerList T *1ist)

Parameters

list
Software Timer List to initialize

Returns

(void)

SoftwareTimer_Get()

Get the value of a timer

Signature

Time_T SoftwareTimer_Get(const SoftwareTimer_T *timer)
Parameters

timer
timer to read

Returns

Time_T
Value of the timer

SoftwareTimer_PeriodicTask()

Decrements each timer in the list by timer period until it reaches a value of 0
Signature

SoftwareTimer_PeriodicTask(SoftwareTimerList T *1list)

Parameters

list
List of Software Timers to decrement

Returns

(void)
SoftwareTimer_Register()
Register a Software Timer
Signature

bool t SoftwareTimer_ Register(SoftwareTimerList T *1list, SoftwareTimer T
*timer)

Parameters

list
List to register with

timer
timer to register

Returns

bool_t
TRUE Timer was successfully registered
FALSE Timer registration failed

SoftwareTimer_Set()
Set the value of a timer

Signature
void SoftwareTimer_Set(SoftwareTimer T *timer, Time T timeout)

Parameters

timer
Timer to set

timeout
Time until timeout

Returns

(void)
SoftwareTimer_Unregister()
Unregister a Software Timer
Signature

bool t SoftwareTimer_Unregister(SoftwareTimerList T *1list, SoftwareTimer_ T
*timer)

Parameters

list
List to unregister with

timer
timer to unregister

Returns

bool_t
TRUE Timer was successfully registered FALSE Timer registration failed

String_Length()

Determines length of string (no limit to length)

Signature
Size T String_Length(const char *string)
Parameters

string
C string to determine length of

Returns

Size T
Size of string

String_LimitedLength()

Determines length of string (with a maximum length)

Signature

Size_T String_LimitedLength(const char *string, Size T limit)
Parameters

string
C string to determine length of

limit
Maximum length of string

Returns

Size_T
Size of string

Transport_Abort()
Abort a transport session (if it's still open)
Signature

bool t Transport_ Abort(const Foundation T *foundation, const ISOBUS Message T
*message)

Parameters

foundation
Foundation Functionality structure for this application

message
Message/session to abort

Returns

bool_t
TRUE Session successfully closed
FALSE Session not closed

Transport_MessageHandler_Register()
Register a Message/Event Handler

Note: If the PGN is always a single packet message, you may improve performance by using
Foundation_PacketHandler_Register()_instead._

Signature

bool_t Transport_MessageHandler Register(Foundation_T *foundation, struct
Transport_MessageHandler_Node_S *message_handler_node)

Parameters

foundation
Foundation Functionality structure for this application

message_handler_node
Node containing DataPage/PGN and handler to register

Returns

bool_t
TRUE message_handler_node was successfully registered
FALSE message_handler_node was not successfully registered

Transport_MessageHandler_Unregister()
Unregister a Message/Event Handler

Signature

bool_t Transport_MessageHandler_Unregister(Foundation_T *foundation, struct
Transport_MessageHandler_ Node_S *message_handler_node)

Parameters

foundation
Foundation Functionality structure for this application

message_handler_node
Node to unregister

Returns

bool_t
TRUE message_handler_node was successfully unregistered
FALSE message_handler_node was not successfully unregistered

Transport_SendMessage()
Initiate the transport of a message and sends packet using appropriate protocol
Note: Please do not pass a valid structure with a NULL_ function pointer_

Signature

bool_t Transport_SendMessage(const Foundation_T *foundation, ISOBUS_Message T
*message, const ISOBUS_ MessageCallback T *callback)

Parameters

foundation
Foundation Functionality structure for this application

message
Message to Send

callback
Contains callback information

Returns

bool_t
TRUE Transport session opened
FALSE Transport session not opened

Utility_MemoryCopy()

Copies from source to destination

Signature

void Utility MemoryCopy(void destination, void source, Size T size)
Parameters

destination
Destination for data to copy

source
Source of data to copy

size
size of data to copy (from sizeof())

Returns
(void)
Utility_TolLowerCase()

Converts character to lower case

Signature
char Utility_TolLowerCase(char character)
Parameters

character
Character to convert

Returns

char
Character converted to uppercase

Utility_ToUppercCase()

Converts character to lower case

Signature

char Utility_ToUpperCase(char character)
Parameters

character
Character to convert

Returns

char
Character converted to uppercase

Macros

MAKE_Acknowledge S()

This macro is used to initialize a struct Acknowledge_S
Signature

MAKE_Acknowledge S(priority)

Parameters

priority
Highest priority of the tasks that access this structure

MAKE_DTC_List_T()
This macro is used to create the DTC List T

Signature

MAKE_DTC_List_T(dtc_array, dtc_status_array, priority)

Parameters

dtc_array
Array name for SPN/FMI information

dtc_status_array
Array name for active/count information

priority
Maximum task priority accessing DTCs

MAKE_Foundation_T()
This macro is used to initialize the Foundation_T type
Signature

MAKE_Foundation_T(sw_timer_list, network, addressclaim, name, transport,
language_callbacklist, ecu_id, software_id, product_id, diagnostics,
dtc_list, functionalities, certification, memory, packet_handlers, request,
acknowledge)

Parameters sw_timer_list : Pointer to the SoftwareTimerList used by this App

network
Pointer to the Network used by this App

addressclaim
Address Claim data structure for this App

name
8 byte array to hold the CAN Name for this application

transport
Transport Protocol structure (including Extended TP)

language_callbacklist
Linked list of callbacks

ecu_id
ECU ID structure

software_id
SW ID structure

product_id
Product ID structure

diagnostics
Diagnostics services structure

dtc_list
List of DTCs

functionalities
Functionalities services structure

certification
Certification structure

memory
Memory function pointer structure

packet_handlers
Allows registration of packet handlers

request
Allows registration of Request handlers

acknowledge
Allows registration of Acknowledgement handlers

MAKE_Foundation_PacketHandler_List_S()

This macro is used to initialize a struct Foundation_PacketHandler_List_S

Signature

MAKE_Foundation_PacketHandler_List_S(queue_ptr, global_ filter, priority)
Parameters

queue_ptr
Pointer to optional Queue_T structure (NULL = no queue)

global_filter
Global filter applied to all packets received by this Foundation structure

priority
Highest priority of the tasks that access this structure

MAKE_ISOBUS_AddressClaim_S()

This macro is used to initialize an ISOBUS_AddressClaim_S structure
Signature

MAKE_ISOBUS AddressClaim S(sa_primary,choose sa_ fn,priority)
Parameters

sa_primary
Primary application source address

choose_sa_fn
Function pointer to choose next source address (NULL to use built-in function)

priority
Priority of calling function

MAKE_ISOBUS_ Certification_T()
This macro is used to initialize the ISOBUS_Certification_T type

Signature

MAKE_ISOBUS Certification_T(year, rev, lab_id, lab_type, reference_number,
min_ecu, tecu_ 1, tecu_ 2, tecu 3, class3 ecu, virtual terminal, vt _ws_master,
vt_ws_member, task_controller, tc_ws_master, tc_ws_member, file_server,
gps_receiver)

Parameters

year
Year of the compliance test protocol to which the certification test was performed

rev
Revision of the compliance test performed. In years where there are multiple revisions of
the test protocol, an alphabetic suffix is used in addition to the certification year

lab_id

Manufacturer code of the laboratory that performed the compliance test. In the case of a
self-certified ECU, this matches the manufacturer code contained in the address claim PGN.
The value of this parameter is assigned by committee

lab_type

Approving body for the certification laboratory (3-bits)
000 - Non-certified laboratory/self-certification

001 - European Union certified laboratory

010 - North American certified laboratory

111 - Not available (not certified)

reference_number

Certification reference number assigned by a certification laboratory. This value can be
used together with the Certification Lab ID and ECU Manufacturer ID to uniquely identify
the test file of the certification laboratory

min_ecu
Indicates whether the Minimum ECU compliance test was performed

tecu_1
Indicates whether the TECU Class 1 compliance test was performed

tecu_2
Indicates whether the TECU Class 2 compliance test was performed

tecu_3
Indicates whether the TECU Class 3 compliance test was performed

class3_ecu
Indicates whether the Class 3 ECU compliance test was performed

virtual_terminal
Indicates whether the Virtual Terminal compliance test was performed

vt_ws_master
Indicates whether the VT Working Set Master compliance test was performed

vt_ws_member
Indicates whether the VT Working Set Member compliance test was performed

task_controller
Indicates whether the Task Controller compliance test was performed

tc_ws_master
Indicates whether the TC Working Set Master compliance test was performed

tc_ws_member
Indicates whether the TC Working Set Member compliance test was performed

file_server
Indicates whether the File Server compliance test was performed

gps_receiver
Indicates whether the GPS Receiver compliance test was performed

MAKE_ISOBUS_DiagnosticProtocol_T()

This macro is used to initialize an ISOBUS_DiagnosticProtocol_T
Signature

MAKE_ISOBUS_DiagnosticProtocol T(protocol, priority)
Parameters

protocol
Selected ECU diagnostic protocol enumeration

priority
Highest priority of the tasks that access this structure

MAKE_ISOBUS_EcuId T()

This macro is used to initialize an ISOBUS_Eculd_T structure
Signature

MAKE_ISOBUS Eculd T(priority, fields)

Parameters

priority
Highest priority of the tasks that access this structure

fields
Name of the ECU ID fields (EculdFields_T) structure

MAKE_ISOBUS_Functionalities_T()

This macro is used to initialize an ISOBUS_Functionalities_T structure
Signature

MAKE_ISOBUS_ Functionalities_ T(priority, functionalities)
Parameters

priority
Highest priority of the tasks that access this structure

functionalities
Array of Functionalities_T

MAKE_ISOBUS_Name_T()
This macro is used to initialize the ISOBUS_Name_T type

Signature

MAKE_ISOBUS_Name_T(self_configurable, industry_group,
device_class_instance,device_class, function, function_instance,
ecu_instance, manufacturer_code, identity_number)

Parameters

self_configurable
Indicates whether a Control Function is self-configurable (1) or not (0)

industry_group
Defined and assigned by ISO, identifies NAMEs associated with industries (e.g. agricultural
equipment)

device_class_instance
Indicates occurrence of a particular device class in a connected network; definition
depends on industry group field contents

device_class

Defined and assigned by ISO; provides a common NAME for a group of functions within a
connected network; when combined with an industry group, can be correlated to a
common NAME, e.g "planter” with "agricultural equipment”

function
Defined and assigned by ISO; when value between 0 and 127, independent of any other
field for definition; when > 127 but < 254, definition depends on device class; when

combined with industry group and device class, can be correlated to a common NAME for
specific CF, though not implying any specific capabilities

function_instance
Indicates specific occurrence of a function on a particular device system of a network

ecu_instance
Indicates which of a group of ECUs associated with a given function is referenced

manufacturer_code
Assigned by committee (see ISO 11783-1); indicates manufacturer of ECU for which the
NAME is being referenced; independent of any other NAME field

identity_number
Assigned by the ECU manufacturer

MAKE_ISOBUS_ProductId_T()

This macro is used to initialize an ISOBUS_Productld_T structure
Signature

MAKE_ISOBUS ProductId T(priority, fields)

Parameters

priority
Highest priority of the tasks that access this structure

fields
Address of the ProductID list (SoftwareldList_T) structure

MAKE_ISOBUS_SoftwareId T()

This macro is used to initialize an ISOBUS_Softwareld_T structure
Signature

MAKE_ISOBUS Softwareld T(priority, list)

Parameters

priority
Highest priority of the tasks that access this structure

list
Address of the SwID list (SoftwareldList_T) structure

MAKE_ISOBUS_Transport_T()

This macro is used to create a ISOBUS_Transport_T that uses an array of transport sessions
previously declared using the MAKE_TRANSPORT_SESSION macro.

Signature

MAKE_ISOBUS Transport T(priority, max_retries, max_packets per_ cts,
tp_sessions, tp_pipes)

Parameters

priority
Highest priority of the tasks that access this structure

max_retries
Maximum number of times to retry a single transport session (standard recommends 2)

max_packets_per_cts
Maximum number of data packets that can be sent in response to a single CTS (standard
recommends 16). This is also the maximum number of packets that can be re-requested

tp_sessions
Name of the array of transport sessions

tp_pipes
Name of the pipe collection

MAKE_LanguageCallbackList_T()

This macro is used to initialize a LanguageCallbackList_T structure
Signature

MAKE_LanguageCallbackList T(priority)

Parameters

priority
Highest priority of the tasks that access this structure

MAKE_Memory_T()

This macro is used to initialize an Memory_T structure
Signature

MAKE_Memory T(read, write)

Parameters

read
Generic function to read arbitrary memory locations/devices

write
Generic function to write arbitrary memory locations/devices

MAKE_Request_S()

This macro is used to initialize a struct Request_S

Signature
MAKE_Request_S(priority)
Parameters

priority
Highest priority of the tasks that access this structure

MAKE_SoftwareTimer T()

This macro used to initialize a software timer of type [SoftwareTimer_T].
Signature

MAKE_SoftwareTimer_T()

Parameters

(none)

MAKE_SoftwareTimerList_T()

This macro is used to create a list of software timers.
Signature

MAKE_SoftwareTimerList_T(period, priority)
Parameters

period
Time between calls to the periodic task

priority
Highest priority of tasks that access the Software Timers in the list

Structures

Foundation_T

Contains all Foundation Functionality information for an ISOBUS App
Signature

typedef struct ButtonActivation_S ButtonActivation_T
Members

SoftwareTimerList_T *TimerList
Pointer to the SoftwareTimerList used by this App

Network_T *Network
Pointer to the Network used by this App

ISOBUS_AddressClaim_T AddressClaim
Address Claim data structure

ISOBUS_Name_T Name
8 byte array to hold the CAN Name for this application

ISOBUS_Transport_T Transport
Transport Protocol structure (including Extended TP)

LanguageCallbackList_T LanguageCallbackList
Linked list of callbacks

ISOBUS_Eculd_T ECU_ID
ECU ID structure

ISOBUS_SoftwareId T SW_ID
SW ID structure

ISOBUS_ProductId_T Product_ID
Product ID structure

ISOBUS_DiagnosticProtocol T Diagnostics
Diagnostics services structure

DTC_List_T DTCs
DTC List structure

ISOBUS_Functionalities_T Functionalities
Functionalities services structure

ISOBUS_Certification_T Certification
[ISOBUS Compliance Certification message

Memory_T Memory
Memory function pointer structure

Foundation_PacketHandler_List_T PacketHandlers
Packet Handler list

struct Request_S Request
Request packet handlers

struct Acknowledge_S Acknowledge
Acknowledgement packet handlers

ISOBUS_PacketHeader_T

Defines the ISOBUS translation of the 29-bit identifier (with a few additional pieces of
information)

Signature

typedef struct ISOBUS PacketHeader S ISOBUS PacketHeader T
Members

ISOBUS_PGN_T PGN
Parameter Group Number

NameTableIndex_T Destination
Destination Address

NameTableIndex_T Source
Source Address

ISOBUS_Direction_T Direction
Transmitted or Received?

ISOBUS_PacketPriority T Priority
This is used to optimize packet transfer in a system

